The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo.
نویسندگان
چکیده
The development of hindlimb motor activity was studied in an isolated preparation of the chick spinal cord. The motor output from lumbosacral segments was characterized by recording the pattern of ventral root and muscle nerve discharge in 6-14-d-old embryos. In addition, the synaptic drive underlying motoneuron activity was monitored electrotonically from the ventral roots. Spontaneous motor activity consisted of recurring episodes of cyclical motoneuron discharge. During development, both the number of cycles in each episode and the intensity of discharge in each cycle progressively increased. Monophasic, positive ventral root potentials accompanied each cycle of motoneuron discharge. Prior to the innervation of hindlimb muscles at stage 26, ventral root discharge was barely detectable despite the presence of large ventral root potentials. Following hindlimb muscle innervation, each cycle of activity was initiated by a brief, intense discharge that coincided with the rising phase of the ventral root potential. In embryos older than stage 30, the initial discharge was followed, after a delay, by a more prolonged discharge. The duration of ventral root potentials was shortest in the stage 26 embryos, but was similar in embryos at stage 29 and older. The developmental changes in the coordination of antagonist activity were documented by recording the pattern of discharge in sartorius (flexor) and caudilioflexorius (extensor) muscle nerves between stage 30 and stage 36. At stage 30 both sets of motoneurons were coactivated during the brief discharge that initiated each cycle. By stage 31 a second discharge occurred in each cycle. The second discharge was delayed in flexor, but not in extensor, motoneurons, which led to an alternating pattern of activity.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
The differentiation of excitability in embryonic chick limb motoneurons.
The well-documented role of neuromuscular activity as a regulator of motoneuron and muscle development raises important questions about the differentiation of excitability in motoneurons. We have recently described changes in expression of voltage-dependent calcium currents that take place during neuromuscular development in the chick embryo (McCobb et al., 1989). We now report similar analyses...
متن کاملGlycoconjugates Distribution during Developing Mouse Spinal Cord Motor Organizers
Background: The aim of this research was to study the distribution and changes of glycoconjugates particularly their terminal sugars by using lectin histochemistry during mouse spinal cord development. Methods: Formalin-fixed sections of mouse embryo (10-16 fetal days) were processed for lectin histochemical method. In this study, two groups of horseradish peroxidase-labeled specific lectins we...
متن کاملKnockdown of Ephrin-A5 Expression by 40% Does not Affect Motor Axon Growth or Migration into the Chick Hindlimb
Bidirectional signaling between Eph receptor tyrosine kinases and their cell-surface protein signals, the ephrins, comprises one mechanism for guiding motor axons to their proper targets. During projection of motor axons from the lateral motor column (LMC) motor neurons of the spinal cord to the hindlimb muscles in chick embryos, ephrin-A5 has been shown to be expressed in the LMC motor axons u...
متن کاملRepair of Spinal Cord Injury by Co-Transplantation of embryonic Stem Cell-Derived Motor Neuron and Olfactory Ensheathing Cell
Background: The failure of regeneration after spinal cord injury (SCI) has been attributed to axonal demyelination and neuronal death. Cellular replacement and white matter regeneration are both necessary for SCI repair. In this study, we evaluated the co-transplantation of olfactory ensheathing cells (OEC) and embryonic stem (ES) cell-derived motor neurons (ESMN) on contused SCI. Methods: OEC...
متن کاملEffect of chondroitinase ABC on inflammatory and oxidative response following spinal cord injury
Objective(s): Chondroitinase ABC (cABC) treatment improves functional recovery following spinal cord injury (SCI) through degrading inhibitory molecules to axon growth. However, cABC involvement in other pathological processes contributing to SCI remains to be investigated. Here, we studied the effect of cABC I on oxidative stress and inflammation developed in a rat model of SCI.Materials and M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 7 10 شماره
صفحات -
تاریخ انتشار 1987